Extracellular Superoxide Dismutase (EC-SOD) Regulates Gene Methylation and Cardiac Fibrosis During Chronic Hypoxic Stress

Author:

Rajgarhia AyanORCID,Ayyasola Kameshwar,Zaghloul Nahla,Da Re Jorge M. Lopez,Miller Edmund J.,Ahmed Mohamed

Abstract

AbstractBackgroundChronic hypoxic stress induces epigenetic modifications in cardiac fibroblasts, such as inactivation of tumor suppressor genes (RASSF1A), and activation of kinases (ERK1/2). The effects of the antioxidant enzyme, extracellular superoxide dismutase (EC-SOD), on these epigenetic changes has not been fully explored.ObjectivesTo define the effect of EC-SOD overexpression on cardiac fibrosis induced by chronic hypoxia.MethodsWild type C57B6 male mice (WT) and transgenic males with an extra copy of human hEC-SOD (TG) were housed in hypoxia (10% O2) for 21 days. Right ventricular tissue was studied for cardiac fibrosis markers using RT-PCR and Western Blot analyses. Downstream effects were studied, for both RASSF-1 expression and methylation and its relation to ERK1/2, using in-vivo & in-vitro modelsResultsThere were significant increases in markers of cardiac fibrosis : Collagen 1, Alpha Smooth Muscle Actin (ASMA) and SNAIL, in the WT hypoxic animals as compared to the TG hypoxic group (p< 0.05). Expression of DNA methylation enzymes (DNMT 1,2) was significantly increased in the WT hypoxic mice as compared to the hypoxic TG mice (p<0.001). RASSF1A expression was significantly lower and ERK1/2 was significantly higher in hypoxia WT compared to the hypoxic TG group (p<0.05). Use of SiRNA to block RASSF1A gene expression in murine cardiac fibroblast tissue culture led to increased fibroblast proliferation (p<0.05). Methylation of RASSF1A promoter region showed a significant reduction in the TG hypoxic group compared to the WT hypoxic group (0.59 vs 0.75 respectively).ConclusionsEC-SOD significantly attenuates RASSF1A gene methylation, and plays a pivotal role cardiac fibrosis induced by hypoxia.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3