From gas to sugar: Trehalose production inCupriavidus necatorfrom CO2and hydrogen gas

Author:

Löwe Hannes,Beentjes Marleen,Pflüger-Grau Katharina,Kremling Andreas

Abstract

AbstractThe paradigm of a fossil based, non-renewable economy will have to change in the future due to environmental concerns and the inevitable depletion of resources. Therefore, the way we produce and consume chemicals has to be rethought: The bio-economy offers such a concept for the sustainable production of commodity chemicals using waste streams or renewable electricity and CO2. Residual biomass or organic wastes can be gasified to energy rich mixtures that in turn can be used for synthesis gas fermentation.Within this scope, we present a new process for the production of trehalose from gaseous substrates with the hydrogen-oxidizing bacteriumCupriavidus necatorH16. We first show thatC. necatoris a natural producer of trehalose, accumulating up to 3.6% of its cell dry weight as trehalose when stressed with 150 mM sodium chloride. Bioinformatic investigations revealed a so far unknown mode of trehalose and glycogen metabolism in this organism. Next, we evaluated different concepts for the secretion of trehalose and found that expression of the sugar efflux transporter A (setA) fromEscherichia coliwas able to lead to a trehalose-leaky phenotype. Finally, we characterized the strain under autotrophic conditions using a H2/CO2/O2-mixture and other substrates. Even without overexpressing trehalose synthesis genes, titers of 0.47 g/L and yields of around 10% were reached, which shows the great potential of this process.Taken together, this process represents a new way to produce sugars with a higher areal efficiency than photosynthesis by crop plants. With further metabolic engineering, we anticipate an application of this technology for the renewable production of trehalose and other sugars, as well as for the synthesis of13C-labeled sugars.Graphical abstract

Publisher

Cold Spring Harbor Laboratory

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3