Predicting substitutions to modulate disorder and stability in coiled-coils

Author:

Karami YasamanORCID,Saighi Paul,Vanderhaegen Rémy,Gerlier Denis,Longhi Sonia,Laine ElodieORCID,Carbone AlessandraORCID

Abstract

AbstractCoiled-coils are described as stable structural motifs, where two or more helices wind around each other. However, coiled-coils are associated with local mobility and intrinsic disorder. Intrinsically disordered regions (IDRs) in proteins are characterized by lack of stable secondary and tertiary structure under physiological conditions in vitro. They are increasingly recognized as important for protein function. However, characterizing their behaviour in solution and determining precisely the extent of disorder of a protein region remains challenging, both experimentally and computationally. In this work, we propose a computational framework to quantify the extent of disorder within a coiled-coil in solution and to help design substitutions modulating such disorder. Our method relies on the analysis of conformational ensembles generated by relatively short all-atom Molecular Dynamics (MD) simulations. We apply it to the phosphoprotein multimerisation domains (PMD) of Measles virus (MeV) and Nipah virus (NiV), both forming tetrameric left-handed coiled-coils. We show that our method can help quantify the extent of disorder of the C-terminus region of MeV and NiV PMDs, without requiring the input MD trajectory to actually sample the unfolded states of these regions. Moreover, this study provided a conceptual framework for the rational design of substitutions aimed at modulating the stability of the coiled-coils. By assessing the impact of four substitutions known to destabilize coiled-coils, we derive a set of rules to control MeV PMD structural stability and cohesiveness. We therefore design two contrasting substitutions, one increasing the stability of the tetramer and the other increasing its flexibility. Consequently, our method can be considered as a platform to reason about how to design substitutions aimed at regulating flexibility and stability.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3