“Characteristics and stability of sensorimotor activity driven by isolated-muscle group activation in a human with tetraplegia”

Author:

Nickl Robert W.,Anaya Manuel A.,Thomas Tessy M.,Fifer Matthew S.,Candrea Daniel N.,McMullen David P,Thompson Margaret C.,Osborn Luke E.ORCID,Anderson William S.,Wester Brock A.,Tenore Francesco V.,Crone Nathan E.,Cantarero Gabriela L.,Celnik Pablo A.

Abstract

ABSTRACTUnderstanding cortical movement representations and their stability can shed light on robust brain-machine interface (BMI) approaches to decode these representations without frequent recalibration. Here, we characterize the spatial organization (somatotopy) and stability of the bilateral sensorimotor map of forearm muscles in an incomplete-high spinal-cord injury study participant implanted bilaterally in the primary motor and sensory cortices with Utah microelectrode arrays (MEAs).We built the map by recording multiunit activity (MUA) and surface electromyography (EMG) as the participant executed (or attempted) contractions of 2 wrist muscles on each side of the body. To assess stability, we repeatedly mapped and compared left--wrist--extensor-related activity throughout several sessions, comparing somatotopy of active electrodes and neural signals both at the within-electrode (multiunit) and cross-electrode (network) levels.Body maps showed significant activation in motor and sensory cortical electrodes, with fractured, intermixed representations of both intact and paralytic muscles. Within electrodes, firing strength stability decreased with time, with higher stability observed in sensory cortex than in motor, and in the contralateral hemisphere than in the ipsilateral. However, we observed no differences at network level, and no evidence of decoding instabilities for wrist EMG, either across timespans of hours or days, or across recording area. These results demonstrate first-time construction of a bilateral human sensorimotor map with MEAs. Further, while map stability differs between brain area and hemisphere at multiunit/electrode level, these differences are nullified at ensemble level.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3