Iron limitation by transferrin promotes simultaneous cheating of pyoverdine and exoprotease in Pseudomonas aeruginosa

Author:

Tostado-Islas Oswaldo,Mendoza-Ortiz Alberto,Ramírez-García Gabriel,Cabrera-Takane Isamu Daniel,Loarca Daniel,Pérez-González Caleb,Jasso-Chavez Ricardo,Jiménez-Cortés J Guillermo,Hoshiko Yuki,Maeda Toshinari,Cazares AdrianORCID,García-Contreras Rodolfo

Abstract

AbstractPseudomonas aeruginosa is the main bacterial model to study cooperative behaviors, since it yields exoproducts such as exoproteases and siderophores that act as public goods and can be exploited by selfish non-producers that behave as social cheaters. Non-producers of the siderophore pyoverdine are typically isolated in media with low free iron, mainly casamino acids medium supplemented with transferrin. Nevertheless, using a protein as the iron chelator could additionally select mutants unable to produce exoproteases that degrade the transferrin to facilitate iron release. Here, we investigated the dynamics of pyoverdine and exoprotease production in media in which iron was limited by using either transferrin or a cation chelating resin. Our experiments show that concomitant loss of pyoverdine and exoprotease production readily develops in media with transferrin whereas only lack of pyoverdine emerges in medium treated with the resin. Genomic characterization of the exoprotease- and pyoverdine-less mutants revealed large deletions (13 to 33 Kb) including Quorum Sensing (lasR, rsal and lasl) and flagellar genes. Complementation experiments, PCR and motility tests confirmed the deletions. Our work shows that using transferrin as an iron chelator imposes simultaneous selective pressure for the loss of pyoverdine and exoprotease production. The unintended effect of transferrin observed in our experiment settings can help revisiting or informing the design of similar studies.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3