Engineering a virus-like particle to display peptide insertions using an apparent fitness landscape

Author:

Robinson Stephanie A.,Hartman Emily C.,Ikwuagwu Bon C.,Francis Matthew B.,Tullman-Ercek DanielleORCID

Abstract

ABSTRACTPeptide insertions in the primary sequence of proteins expand functionality by introducing new binding sequences, chemical handles, or membrane disrupting motifs. With these properties, proteins can be engineered as scaffolds for vaccines or targeted drug delivery vehicles. Virus-like particles (VLPs) are promising platforms for these applications since they are genetically simple, mimic viral structure for cell uptake, and can deliver multiple copies of a therapeutic agent to a given cell. Peptide insertions in the coat protein of VLPs can increase VLP uptake in cells by increasing cell binding, but it is difficult to predict how an insertion affects monomer folding and higher order assembly. To this end, we have engineered the MS2 VLP using a high-throughput technique, called Systematic Mutagenesis and Assembled Particle Selection (SyMAPS). In this work, we applied SyMAPS to investigate a highly mutable loop in the MS2 coat protein to display 9,261 non-native tripeptide insertions. This library generates a discrete map of three amino acid insertions permitted at this location, validates the FG loop as a valuable position for peptide insertion, and illuminates how properties such as charge, flexibility, and hydrogen bonding can interact to preserve or disrupt capsid assembly. Taken together, the results highlight the potential to engineer VLPs in systematic manner, paving the way to exploring the applications of peptide insertions in biomedically relevant settings.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3