Abstract
AbstractRigorous behavioral studies made in human subjects have shown that small-eccentricity target displacements are associated with increased saccadic reaction times, but the reasons for this remain unclear. Before characterizing the neurophysiological foundations underlying this relationship between the spatial and temporal aspects of saccades, we tested the triggering of small saccades in the male rhesus macaque monkey. We also compared our results to those obtained in human subjects, both from the existing literature and through our own additional measurements. Using a variety of behavioral tasks exercising visual and non-visual guidance of small saccades, we found that small saccades consistently require more time than larger saccades to be triggered in the non-human primate, even in the absence of any visual guidance and when valid advance information about the saccade landing position is available. We also found a strong asymmetry in the reaction times of small upward versus downward visually-guided saccades, similar to larger saccades, a phenomenon that has not been described before for small saccades, even in humans. Following the suggestion that an eye movement is not initiated as long as the visuo-oculomotor system is within a state of balance, in which opposing commands counterbalance each other, we propose that the longer reaction times are a signature of enhanced times needed to create the symmetry-breaking condition that puts downstream premotor neurons into a push-pull regime necessary for rotating the eyeballs. Our results provide an important catalog of non-human primate oculomotor capabilities on the miniature scale, allowing concrete predictions on underlying neurophysiological mechanisms.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献