Network analyses implicate a role for PHYTOCHROME-mediated light signaling in the regulation of cuticle development in plant leaves

Author:

Qiao Pengfei,Bourgault Richard,Mohammadi Marc,Smith Laurie G.,Gore Michael A.ORCID,Molina IsabelORCID,Scanlon Michael J.

Abstract

AbstractPlant cuticles are composed of wax and cutin, and evolved in the land plants as a hydrophobic boundary that reduces water loss from the plant epidermis. The expanding maize adult leaf displays a dynamic, proximodistal gradient of cuticle development, from the leaf base to the tip. Laser microdissection RNA Sequencing (LM-RNAseq) was performed along this proximodistal gradient, and complementary network analyses identified potential regulators of cuticle biosynthesis and deposition. Correlations between cuticle development and cell wall biosynthesis processes were identified, as well as evidence of roles for auxin and brassinosteroids. In addition, our network analyses suggested a previously undescribed function for PHYTOCHROME-mediated light signaling during cuticular wax deposition. Genetic analyses reveal that the phyB1 phyB2 double mutant of maize exhibits abnormal cuticle composition, supporting predictions of our coexpression analyses. Reverse genetic analyses also show that phy mutants of the moss Physcomitrella patens exhibit abnormal cuticle composition, suggesting a role for light-stimulated development of cuticular waxes during plant evolution.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3