Genome sequencing and analysis of the first spontaneous Nanosilver resistant bacterium Proteus mirabilis strain SCDR1

Author:

Saeb Amr T. M.,Al-Rubeaan Khalid A.,Abouelhoda Mohamed,Selvaraju Manojkumar,Tayeb Hamsa T.

Abstract

AbstractBackgroundP. mirabilis is a common uropathogenic bacterium that can cause major complications in patients with long-standing indwelling catheters or patients with urinary tract anomalies. In addition, P. mirabilis is a common cause of chronic osteomyelitis in Diabetic foot ulcer (DFU) patients. We isolated P. mirabilis SCDR1 from a Diabetic ulcer patient. We examined P. mirabilis SCDR1 levels of resistance against Nano-silver colloids, the commercial Nano-silver and silver containing bandages and commonly used antibiotics. We utilized next generation sequencing techniques (NGS), bioinformatics, phylogenetic analysis and pathogenomics in the characterization of the infectious pathogen.ResultsP. mirabilis SCDR1 is a multi-drug resistant isolate that also showed high levels of resistance against Nano-silver colloids, Nano-silver chitosan composite and the commercially available Nano-silver and silver bandages. The P. mirabilis -SCDR1 genome size is 3,815,621 bp. with G+C content of 38.44%. P. mirabilis-SCDR1 genome contains a total of 3,533 genes, 3,414 coding DNA sequence genes, 11, 10, 18 rRNAs (5S, 16S, and 23S), and 76 tRNAs. Our isolate contains all the required pathogenicity and virulence factors to establish a successful infection. P. mirabilis SCDR1 isolate is a potential virulent pathogen that despite its original isolation site, wound, it can establish kidney infection and its associated complications. P. mirabilis SCDR1 contains several mechanisms for antibiotics and metals resistance including, biofilm formation, swarming mobility, efflux systems, and enzymatic detoxification.ConclusionP. mirabilis SCDR1 is the first reported spontaneous Nanosilver resistant bacterial strain. P. mirabilis SCDR1 possesses several mechanisms that may lead to the observed Nanosilver resistance.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3