Abstract
AbstractMany organisms, including yeast cells, bacteria, nematodes and tardigrades, endure harsh environmental conditions, such as nutrient scarcity, or lack of water and energy for a remarkably long time. The rescue programs that these organisms launch upon encountering these adverse conditions include reprogramming their metabolism in order to enter a quiescent or dormant state in a controlled fashion. Reprogramming coincides with changes in the macromolecular architecture and changes in the physical and mechanical properties of the cells. However, the cellular mechanisms underlying the physical-mechanical changes remain enigmatic. Here, we induce metabolic arrest of yeast cells by lowering their intracellular pH. We then determine the differences in the intracellular mass density and stiffness of active and metabolically arrested cells using optical diffraction tomography and atomic force microscopy. We show that an increased intracellular mass density is associated with an increase in stiffness when the growth of yeast is arrested. However, increasing the intracellular mass density alone is not sufficient for maintenance of the growth-arrested state in yeast cells. Our data suggest that the cytoplasm of metabolically arrested yeast displays characteristics of solid. Our findings constitute a bridge between the mechanical behavior of the cytoplasm and the physical and chemical mechanisms of metabolically arrested cells with the ultimate aim of understanding dormant organisms.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献