National and Regional Influenza-Like-Illness Forecasts for the USA

Author:

Ben-Nun Michal,Riley Pete,Turtle James,Bacon David P.,Riley Steven

Abstract

AbstractHealth planners use forecasts of key metrics associated with influenza-like-illness (ILI); near-term weekly incidence, week of season onset, week of peak, and intensity of peak. Here, we describe our participation in a weekly prospective ILI forecasting challenge for the United States for the 2016-17 season and subsequent evaluation of our performance. We implemented a metapopulation model framework with 32 model variants. Variants differed from each other in their assumptions about: the force-of-infection (FOI); use of uninformative priors; the use of discounted historical data for not-yet-observed time points; and the treatment of regions as either independent or coupled. Individual model variants were chosen subjectively as the basis for our weekly forecasts; however, a subset of coupled models were only available part way through the season. Most frequently, during the 2016-17 season, we chose; FOI variants with both school vacations and humidity terms; uninformative priors; the inclusion of discounted historical data for not-yet-observed time points; and coupled regions (when available). Our near-term weekly forecasts substantially over-estimated incidence early in the season when coupled models were not available. However, our forecast accuracy improved in absolute terms and relative to other teams once coupled solutions were available. In retrospective analysis, we found that the 2016-17 season was not typical: on average, coupled models performed better when fit without historically augmented data. Also, we tested a simple ensemble model for the 2016-17 season and found that it underperformed our subjective choice for all forecast targets. In this study, we were able to improve accuracy during a prospective forecasting exercise by coupling dynamics between regions. Although reduction of forecast subjectivity should be a long-term goal, some degree of human intervention is likely to improve forecast accuracy in the medium-term in parallel with the systematic consideration of more sophisticated ensemble approaches.Author summaryIt is estimated that there are between 3 and 5 million worldwide annual seasonal cases of severe influenza illness, and between 290 000 and 650 000 respiratory deaths [1]. Influenza-like-illness (ILI) describes a set of symptoms and is a practical way for health-care workers to easily estimate likely influenza cases. The Centers for Disease Control (CDC) collects and disseminates ILI information, and has, for the last several years, run a forecasting challenge (the CDC Flu Challenge) for modelers to predict near-term weekly incidence, week of season onset, week of peak, and intensity of peak. We have developed a modeling framework that accounts for a range of mechanisms thought to be important for influenza transmission, such as climatic conditions, school vacations, and coupling between different regions. In this study we describe our forecast procedure for the 2016-17 season and highlight which features of our models resulted in better or worse forecasts. Most notably, we found that when the dynamics of different regions are coupled together, the forecast accuracy improves. We also found that the most accurate forecasts required some level of forecaster interaction, that is, the procedure could not be completely automated without a reduction in accuracy.

Publisher

Cold Spring Harbor Laboratory

Reference37 articles.

1. WHO Seasonal Influenza; accessed October 9 , 2018. http://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)t.

2. A Cluster of Cases of Severe Acute Respiratory Syndrome in Hong Kong

3. Swine influenza A (H1N1) infection in two children–Southern California, March-April 2009;Centers for Disease Control and Prevention CDC;MMWR Morb Mortal Wkly Rep.,2009

4. Zika Virus Outbreak, Bahia, Brazil

5. Chertien JP , George D , Shaman J , Chitale RA , E MF. Influenza Forecasting in Human Populations: a Scoping Review; 2014. Available from: https://doi.org/10.1371/journal.pone.0094130.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3