A phenomenological spatial model for macro-ecological patterns in species-rich ecosystems

Author:

Peruzzo Fabio,Azaele SandroORCID

Abstract

Over the last few decades, ecologists have come to appreciate that key ecological patterns, which describe ecological communities at relatively large spatial scales, are not only scale dependent, but also intimately intertwined. The relative abundance of species – which informs us about the commonness and rarity of species – changes its shape from small to large spatial scales. The average number of species as a function of area has a steep initial increase, followed by decreasing slopes at large scales. Finally, if we find a species in a given location, it is more likely we find an individual of the same species close-by, rather than farther apart. Such spatial turnover depends on the geographical distribution of species, which often are spatially aggregated. This reverberates on the abundances as well as the richness of species within a region, but so far it has been difficult to quantify such relationships.Within a neutral framework – which considers all individuals competitively equivalent – we introduce a spatial stochastic model, which phenomenologically accounts for birth, death, immigration and local dispersal of individuals. We calculate the pair correlation function – which encapsulates spatial turnover – and the conditional probability to find a species with a certain population within a given circular area. Also, we calculate the macro-ecological patterns, which we have referred to above, and compare the analytical formulæ with the numerical integration of the model. Finally, we contrast the model predictions with the empirical data for two lowland tropical forest inventories, showing always a good agreement.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3