The genome of Caenorhabditis bovis

Author:

Stevens LewisORCID,Rooke StefanORCID,Falzon Laura CORCID,Machuka Eunice MORCID,Momanyi KelvinORCID,Murungi Maurice K,Njoroge Samuel MORCID,Odinga Christian O,Ogendo Allan,Ogola Joseph,Fèvre Eric M,Blaxter MarkORCID

Abstract

AbstractThe free-living nematode Caenorhabditis elegans is a key laboratory model for metazoan biology. C. elegans is also used as a model for parasitic nematodes despite being only distantly related to most parasitic species. All ∼65 Caenorhabditis species currently in culture are free-living with most having been isolated from decaying plant or fungal matter. Caenorhabditis bovis is a particularly unusual species, having been isolated several times from the inflamed ears of Zebu cattle in Eastern Africa where it is believed to be the cause of bovine parasitic otitis. C. bovis is therefore of particular interest to researchers interested in the evolution of nematode parasitism and in Caenorhabditis diversity. However, as C. bovis is not in laboratory culture, it remains little studied and details of its prevalence, role in bovine parasitic otitis and relationships to other Caenorhabditis species are scarce. Here, by sampling livestock markets and slaughterhouses in Western Kenya, we successfully reisolate C. bovis from the ear of adult female Zebu. We sequence the genome of C. bovis using the Oxford Nanopore MinION platform in a nearby field laboratory and use the data to generate a chromosome-scale draft genome sequence. We exploit this draft genome to reconstruct the phylogenetic relationships of C. bovis to other Caenorhabditis species and reveal the changes in genome size and content that have occurred during its evolution. We also identify expansions in several gene families that have been implicated in parasitism in other nematode species, including those associated with resistance to antihelminthic drugs. The high-quality draft genome and our analyses thereof represent a significant advancement in our understanding of this unusual Caenorhabditis species.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3