Identifying dynamic, partially occupied residues using anomalous scattering

Author:

Rocchio Serena,Duman Ramona,El Omari Kamel,Mykhaylyk Vitaliy,Yan Zhen,Wagner Armin,Bardwell James C. A.,Horowitz Scott

Abstract

AbstractX-ray crystallography is generally used to take single snapshots of a protein’s conformation. The important but difficult task of characterizing structural ensembles in crystals is typically limited to small conformational changes, such as multiple side-chain conformations. A crystallographic method was recently introduced that utilizes Residual Anomalous and Electron Density (READ) to characterize structural ensembles encompassing large-scale structural changes. Key to this method is an ability to accurately measure anomalous signals and distinguish them from noise or other anomalous scatterers. This report presents an optimized data collection and analysis strategy for partially occupied iodine anomalous signals. Using the long wavelength-optimized beamline I23 at Diamond Light Source, the ability to accurately distinguish the positions of anomalous scatterers with as low as ~12% occupancy is demonstrated. The number and position of these anomalous scatterers are consistent with previous biophysical, kinetic and structural data that suggest the protein Im7 binds to the chaperone Spy in multiple partially occupied conformations. This study shows that a long-wavelength beamline results in easily validated anomalous signals that are strong enough to be used to detect and characterize highly dynamic sections of crystal structures.SynopsisStructural studies on partially occupied, dynamic protein systems by crystallography are difficult. We present methods here for detecting these states in crystals.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3