Abstract
AbstractIonic silver is known to be an effective antimicrobial agent widely used in the cleaning and medical industries, however, there are several concerns regarding the release of silver pollutants into the environment. Presented here are two engineered bacterial biosensors for the detection and quantification of silver. The biosensors contain a silver resistance operon and a GFP gene that is strictly regulated through silver activated regulatory regions that control expression of thesiloperons. The two biosensors are responsive to a wide range of silver ion concentrations, and a correlation between silver and GFP signal is seen at select concentration ranges. The biosensors were shown to detect silver ions released from silver nanoparticles, and have the potential to become a method for monitoring ion release rates of different nanoparticles. Interestingly, the close homology of the silver resistance and copper resistance genes allowed for the biosensor to also be responsive to copper ions, implying that copper ions activate silver resistance. Further development of this biosensor could lead to commercial applications for environmental monitoring.ImportanceIonic silver is known to have many harmful environmental effects. Silver pollutants have been found in various environmental settings such as natural waterways and tailings from mining operations, raising concern. In addition, persistent exposure to silver in medical and environmental settings has led to the development of silver resistant bacteria, many of which are also resistant to a wide range of antibiotics. Some of these have the potential to develop into human pathogens. It then becomes important to have standardized methods for detecting and monitoring silver concentrations in various environments so that appropriate measures can be taken to prevent further silver ion release. This research shows that bacterial biosensors engineered to detect and quantify silver ions can be developed as effective alternatives to traditional analytical techniques. Further development of such biosensors could result in a commercial system for short and long term environmental monitoring, which is important as products containing silver and other heavy metals become increasingly popular.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献