Minor deviations from randomness have huge repercussions on the functional structuring of sequence space

Author:

Weidmann LauraORCID,Dijkstra TjeerdORCID,Kohlbacher OliverORCID,Lupas Andrei N.ORCID

Abstract

Approaches based on molecular evolution have organized natural proteins into a hierarchy of families, superfamilies, and folds, which are often pictured as islands in a great sea of unrealized and generally non-functional polypeptides. In contrast, approaches based on information theory have substantiated a mostly random scatter of natural proteins in global sequence space. We evaluate these opposing views by analyzing fragments of a given length derived from either a natural dataset or different random models. For this, we compile distances in sequence space between fragments within each dataset and compare the resulting distance distributions between sets. Even for 100-mers, more than 95% of distances can be accounted for by a random sequence model that incorporates the natural amino acid frequency of proteins. When further accounting for the specific residue composition of the respective fragments, which would include biophysical constraints of protein folding, more than 99% of all distances can be modeled. Thus, while the local space surrounding a protein is almost entirely shaped by common descent, the global distribution of proteins in sequence space is close to random, only constrained by divergent evolution through the requirement that all intermediates connecting two forms in evolution must be functional.Significance StatementWhen generating new proteins by evolution or design, can the entire sequence space be used, or do viable sequences mainly occur only in some areas of this space? As a result of divergent evolution, natural proteins mostly form families that occupy local areas of sequence space, suggesting the latter. Theoretical work however indicates that these local areas are highly diffuse and do not dramatically affect the statistics of sequence distribution, such that natural proteins can be considered to effectively cover global space randomly, though extremely sparsely. By comparing the distance distribution of natural sequences to that of various random models, we find that they are indeed distributed largely randomly, provided that the amino acid composition of natural proteins is respected.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Alternative Reading Frames are an Underappreciated Source of Protein Sequence Novelty;Journal of Molecular Evolution;2023-06-16

2. Molecular Information Theory Meets Protein Folding;The Journal of Physical Chemistry B;2022-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3