Identification of a Novel Base J Binding Protein Complex Involved in RNA Polymerase II Transcription Termination in Trypanosomes

Author:

Kieft RudoORCID,Zhang Yang,Marand Alexandre P.ORCID,Moran Jose Dagoberto,Bridger RobertORCID,Wells Lance,Schmitz Robert J.ORCID,Sabatini RobertORCID

Abstract

AbstractBase J, β-D-glucosyl-hydroxymethyluracil, is a modification of thymine DNA base involved in RNA Polymerase (Pol) II transcription termination in kinetoplastid protozoa. Little is understood regarding how specific thymine residues are targeted for J-modification or the mechanism of J regulated transcription termination. To identify proteins involved in J-synthesis, we expressed a tagged version of the J-glucosyltransferase (JGT) in Leishmania tarentolae, and identified four co-purified proteins by mass spectrometry: protein phosphatase (PP1), a homolog of Wdr82, a potential PP1 regulatory protein (PNUTS) and a protein containing a J-DNA binding domain (named JBP3). Gel shift studies indicate JBP3 is a J-DNA binding protein. Reciprocal tagging, co-IP and sucrose gradient analyses indicate PP1, JGT, JBP3, Wdr82 and PNUTS form a multimeric complex in kinetoplastids, similar to the mammalian PTW/PP1 complex involved in transcription termination via PP1 mediated dephosphorylation of Pol II. Using RNAi and analysis of Pol II termination by RNA-seq and RT-PCR, we demonstrate that ablation of PNUTS, JBP3 and Wdr82 lead to defects in Pol II termination at the 3’-end of polycistronic gene arrays in Trypanosoma brucei. Mutants also contain increased antisense RNA levels upstream of promoters, suggesting an additional role of the complex in regulating termination of bi-directional transcription. In addition, PNUTS loss causes derepression of silent Variant Surface Glycoprotein genes important for host immune evasion. Our results provide the first direct mechanistic link between base J and regulation of Pol II termination and suggest a novel molecular model for the role of the CTD of Pol II in terminating polycistronic transcription in trypanosomatids.Author SummaryTrypanosoma brucei is an early-diverged parasitic protozoan that causes African sleeping sickness in humans. The genome of T. brucei is organized into polycistronic gene clusters that contain multiple genes that are co-transcribed from a single promoter. We have recently described the presence of a modified DNA base J and variant of histone H3 (H3.V) at transcription termination sites within gene clusters where the loss of base J and H3.V leads to read-through transcription and the expression of downstream genes. We now identify a novel stable multimeric complex containing a J binding protein (JBP3), base J glucosyltransferase (JGT), PP1 phosphatase, PP1 interactive-regulatory protein (PNUTS) and Wdr82, which we refer to as PJW/PP1. A similar complex (PTW/PP1) has been shown to be involved in Pol II termination in humans and yeast. We demonstrate that PNUTS, JBP3 and Wdr82 mutants lead to read-through transcription in T. brucei. Our data suggest the PJW/PP1 complex regulates termination by recruitment to termination sites via JBP3-base J interactions and dephosphorylation of specific proteins (including Pol II and termination factors) by PP1. These findings significantly expand our understanding of mechanisms underlying transcription termination in eukaryotes, including divergent organisms that utilize polycistronic transcription and novel epigenetic marks such as base J and H3.V. The studies also provide the first direct mechanistic link between J modification of DNA at termination sites and regulated Pol II termination and gene expression in kinetoplastids.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3