Stress-Induced DNA Duplex Destabilization (SIDD) in the E. coli Genome: SIDD Sites Are Closely Associated With Promoters

Author:

Wang Huiquan,Noordewier Michiel,Benham Craig J.

Abstract

We present the first analysis of stress-induced DNA duplex destabilization (SIDD) in a complete chromosome, the Escherichia coli K12 genome. We used a newly developed method to calculate the locations and extents of stress-induced destabilization to single-base resolution at superhelix density σ = –0.06. We find that SIDD sites in this genome show a statistically highly significant tendency to avoid coding regions. And among intergenic regions, those that either contain documented promoters or occur between divergently transcribing coding regions, and hence may be inferred to contain promoters, are associated with strong SIDD sites in a statistically highly significant manner. Intergenic regions located between convergently transcribing genes, which are inferred not to contain promoters, are not significantly enriched for destabilized sites. Statistical analysis shows that a strongly destabilized intergenic region has an 80% chance of containing a promoter, whereas an intergenic region that does not contain a strong SIDD site has only a 24% chance. We describe how these observations may illuminate specific mechanisms of regulation, and assist in the computational identification of promoter locations in prokaryotes.

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics (clinical),Genetics

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3