Performance evaluation of inverse methods for identification and characterization of oscillatory brain sources: Ground truth validation & empirical evidences

Author:

Halder Tamesh,Talwar Siddharth,Jaiswal Amit Kumar,Banerjee Arpan

Abstract

AbstractOscillatory brain electromagnetic activity is an established tool to study neurophysiological mechanisms of human behavior using electro-encephalogram (EEG) and magneto-encephalogram (MEG) techniques. Often, to extract source level information in the cortex, researchers have to rely on inverse techniques that generate probabilistic estimation of the cortical activation underlying EEG/ MEG data from sensors located outside the body. State of the art source localization methods using current density estimates such as exact low resolution electromagnetic tomography (eLORETA) and minimum norm estimates (MNE) as well as beamformers such as Dynamic Imaging of Coherent Sources (DICS) and Linearly Constrained Minimum Variance (LCMV) have over the years been established as the prominent techniques of choice. However, these algorithms produce a distributed map of brain activity underlying sustained and transient responses during neuroimaging studies of behavior. Furthermore, the volume conduction effects, phase lags between sources and noise of the environment play a considerable role in adding uncertainty to source localization. There are very few comparative analyses that evaluates the “ground truth detection” capabilities of these methods and evaluates their efficacies based on sources in temporal cortex relevant for auditory processing as well as mesial temporal lobe epilepsies. In this Methods article, we compare the aforementioned techniques to estimate sources of spectral event generators in the cortex using a two-pronged approach. First, we simulated EEG data with point dipole (single and two-point), as well as, distributed dipole modelling techniques to validate the accuracy and sensitivity of each one of these methods of source localization. The abilities of the techniques were tested by comparing the localization error, focal width, false positive ratios while detecting already known location of neural activity generators under varying signal to noise ratios and depths of sources from cortical surface. Secondly, we performed source localization on empricial EEG data collected from human participants while they listened to rhythmic tone stimuli binaurally. Importantly, we found a less-distributed activation map is generated by LCMV and DICS when compared to eLORETA. However, control of false positives is much superior in eLORETA especially while using realistic distributed dipole scenarios. We also highlight the strengths and drawbacks of eLORETA, LCMV and DICS following a comprehensive analysis of simulated and empirical EEG data.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3