Causal interactions from proteomic profiles: molecular data meets pathway knowledge

Author:

Babur ÖzgünORCID,Luna AugustinORCID,Korkut Anil,Durupinar Funda,Siper Metin Can,Dogrusoz Ugur,Aslan Joseph E.ORCID,Sander ChrisORCID,Demir EmekORCID

Abstract

ABSTRACTMeasurement of changes in protein levels and in post-translational modifications, such as phosphorylation, can be highly informative about the phenotypic consequences of genetic differences or about the dynamics of cellular processes. Typically, such proteomic profiles are interpreted intuitively or by simple correlation analysis. Here, we present a computational method to generate causal explanations for proteomic profiles using prior mechanistic knowledge in the literature, as recorded in cellular pathway maps. To demonstrate its potential, we use this method to analyze the cascading events after EGF stimulation of a cell line, to discover new pathways in platelet activation, to identify influential regulators of oncoproteins in breast cancer, to describe signaling characteristics in predefined subtypes of ovarian and breast cancers, and to highlight which pathway relations are most frequently activated across 32 cancer types. Causal pathway analysis, that combines molecular profiles with prior biological knowledge captured in computational form, may become a powerful discovery tool as the amount and quality of cellular profiling rapidly expands. The method is freely available at http://causalpath.org.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3