Topological data analysis to uncover the shape of immune responses during co-infection

Author:

Sasaki Karin,Bruder Dunja,Hernandez-Vargas EstebanORCID

Abstract

AbstractCo-infections by multiple pathogens have important implications in many aspects of health, epidemiology and evolution. However, how to disentangle the contributing factors of the immune response when two infections take place at the same time is largely unexplored. Using data sets of the immune response during influenza-pneumococcal co-infection in mice, we employ here topological data analysis to simplify and visualise high dimensional data sets.We identified persistent shapes of the simplicial complexes of the data in the three infection scenarios: single viral infection, single bacterial infection, and co-infection. The immune response was found to be distinct for each of the infection scenarios and we uncovered that the immune response during the co-infection has three phases and two transition points. During the first phase, its dynamics is inherited from its response to the primary (viral) infection. The immune response has an early (few hours post co-infection) and then modulates its response to finally react against the secondary (bacterial) infection. Between 18 to 26 hours post co-infection the nature of the immune response changes again and does no longer resembles either of the single infection scenarios.Author summaryThe mapper algorithm is a topological data analysis technique used for the qualitative analysis, simplification and visualisation of high dimensional data sets. It generates a low-dimensional image that captures topological and geometric information of the data set in high dimensional space, which can highlight groups of data points of interest and can guide further analysis and quantification.To understand how the immune system evolves during the co-infection between viruses and bacteria, and the role of specific cytokines as contributing factors for these severe infections, we use Topological Data Analysis (TDA) along with an extensive semi-unsupervised parameter value grid search, and k-nearest neighbour analysis.We find persistent shapes of the data in the three infection scenarios, single viral and bacterial infections and co-infection. The immune response is shown to be distinct for each of the infections scenarios and we uncover that the immune response during the co-infection has three phases and two transition points, a previously unknown property regarding the dynamics of the immune response during co-infection.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3