Trans- and cis-acting effects of the lncRNA Firre on epigenetic and structural features of the inactive X chromosome

Author:

Fang He,Bonora Giancarlo,Lewandowski Jordan P.,Thakur Jitendra,Filippova Galina N.,Henikoff Steven,Shendure Jay,Duan Zhijun,Rinn John L.ORCID,Deng Xinxian,Noble William S.,Disteche Christine M.

Abstract

AbstractFirre encodes a lncRNA involved in nuclear organization in mammals. Here we find that Firre RNA is transcribed from the active X chromosome (Xa) and exerts trans-acting effects on the inactive X chromosome (Xi). Allelic deletion of Firre on the Xa in a mouse hybrid fibroblast cell line results in a dramatic loss of the histone modification H3K27me3 and of components of the PRC2 complex on the Xi as well as the disruption of the perinucleolar location of the Xi. These features are measurably rescued by ectopic expression of a mouse or human Firre/FIRRE cDNA transgene, strongly supporting a conserved trans-acting role of the Firre transcript in maintaining the Xi heterochromatin environment. Surprisingly, CTCF occupancy is decreased on the Xi upon loss of Firre RNA, but is partially recovered by ectopic transgene expression, suggesting a functional link between Firre RNA and CTCF in maintenance of epigenetic features and/or location of the Xi. Loss of Firre RNA results in dysregulation of genes implicated in cell division and development, but not in reactivation of genes on the Xi, which retains its bipartite structure despite some changes in chromatin contact distribution. Allelic deletion or inversion of Firre on the Xi causes localized redistribution of chromatin contacts, apparently dependent on the orientation of CTCF binding sites clustered at the locus. Thus, the Firre locus and its RNA have roles in the maintenance of epigenetic features and structure of the Xi.

Publisher

Cold Spring Harbor Laboratory

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3