Abstract
ABSTRACTCommon variable immunodeficiency (CVID), the most prevalent symptomatic primary immunodeficiency, is characterized by impaired terminal B-cell differentiation and defective antibody responses. Incomplete genetic penetrance and a wide range of phenotypic expressivity in CVID suggest the participation of additional pathogenic mechanisms. Monozygotic (MZ) twins discordant for CVID are uniquely valuable for studying the contribution of epigenetics to the disease. We used single-cell epigenomics and transcriptomics to create a cell census of naïve-to-memory B cell differentiation in a pair of CVID-discordant MZ twins. Our analysis identifies DNA methylation, chromatin accessibility and transcriptional defects in memory B cells that mirror defective cell-cell communication defects following activation. These findings were validated in a cohort of CVID patients and healthy donors. Our findings provide a comprehensive multi-omics map of alterations in naïve-to-memory B-cell transition in CVID and reveal links between the epigenome and immune cell cross-talk. Our resource, publicly available at the Human Cell Atlas, paves the way for future diagnosis and treatments of CVID patients.
Publisher
Cold Spring Harbor Laboratory