Zn2+ acts as a brake signal for axonal transport by directly inhibiting motor protein progression

Author:

Minckley Taylor F.ORCID,Dischler Anna M.,Fudge Dylan H.,Zadeh Ebrahim Ghazvini,Li Wen-hongORCID,Verhey KristenORCID,Markus Steven M.,Qin YanORCID

Abstract

AbstractAccurate delivery of cargo over long distances through axonal transport requires precise spatiotemporal regulation. Here we discover that Zn2+, either released from lysosomes through TRPML1 or influx via depolarization, inhibits axonal transport. Zn2+-mediated inhibition is neither selective for cargo nor for cell type because elevated Zn2+ (IC50 ≈ 5 nM) reduces both lysosomal and mitochondrial motility in primary rat hippocampal neurons and HeLa cells. We further reveal that Zn2+ directly binds to microtubules and inhibits movement of kinesin motors. Loss of TRPML1 function, which causes Mucolipidosis Type IV (MLIV) disease, impairs lysosomal Zn2+ release, disrupts Zn2+-mediated regulation of axonal transport, and increases overall organellar motility. In addition, MLIV patient mutations in TRPML1 have decreased Zn2+ permeability, which parallels disease severity. Our results reveal that Zn2+ acts as a critical signal to locally pause axonal transport by directly blocking the progression of motor proteins on microtubules.Significance StatementDisruptions in proper axonal transport have been linked to neurodevelopmental and neurodegenerative diseases. Here we discover that activation of the lysosomal channel TRPML1 arrests lysosomal trafficking. Such lysosome self-regulation mechanism is mediated via TRPML1-mediated Zn2+, not Ca2+. We further reveal that Zn2+ acts as a critical brake signal to pause axonal transport locally by directly decorating microtubules and blocking the movement of motor proteins. Dysfunction of TRPML1, the genetic cause of Mucolipidosis type IV (MLIV), blocks lysosomal Zn2+ release, causing loss of fine-tuning of lysosomal motility. Overall, this study implicates the importance of Zn2+ signals and axonal transport in the pathology of MLIV and reveals new signaling roles for Zn2+ in regulating cell processes involved with microtubule-based transport.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3