Abstract
AbstractThe recent years have seen the rise of pangenomes as comparative genomic tools to better understand the evolution of gene content among microbial genomes in close phylogenetic groups such as species. While the core or persistent genome is often well-known as it includes essential or ubiquitous genes, the variable genome is usually less characterized and includes many genes with unknown functions even among the most studied organisms. It gathers important genes for strain adaptation that are acquired by horizontal gene transfer. Here, we introduce panModule, an original method to identify conserved modules in pangenome graphs built from thousands of microbial genomes. These modules correspond to synteny blocks composed of consecutive genes that are conserved in a subset of the compared strains. Identifying conserved modules can provide insights on genes involved in the same functional processes, and as such is a very helpful tool to facilitate the understanding of genomic regions with complex evolutionary histories. The panModule method was benchmarked on a curated dataset of conserved modules in Escherichia coli genomes. Its use was illustrated through a study of a high pathogenicity island in Klebsiella pneumoniae that allowed a better understanding of this region. panModule is freely available and accessible through the PPanGGOLiN software suite (https://github.com/labgem/PPanGGOLiN).
Publisher
Cold Spring Harbor Laboratory