Bacterial Outer Membrane Vesicles Induce a Transcriptional Shift in Arabidopsis Towards Immune System Activation Leading to Suppression of Pathogen Growth in Planta

Author:

Chalupowicz Laura,Mordukhovich Gideon,Assoline Nofar,Katsir Leron,Sela Noa,Bahar OfirORCID

Abstract

ABSTRACTGram negative bacteria form spherical blebs on their cell periphery, which later dissociate and released into the surrounding environment. Previous studies have shown that these nano scale structures, derived primarily from the bacterial outer membrane and are termed outer membrane vesicles (OMVs), induce typical immune outputs in both mammals and plants. On the other hand, these same structures have been shown to promote infection and disease. To better understand the broad transcriptional change plants undergo following exposure to OMVs, we treated Arabidopsis thaliana (Arabidopsis) seedlings with OMVs purified from the Gram-negative plant pathogenic bacterium Xanthomonas campestris pv. campestris and performed RNA-seq analysis on OMV- and mock-treated samples at 2, 6 and 24 h post challenge. We found that the most pronounced transcriptional shift occurred in the first two time points, as was reflected by both the number of differentially expressed genes (DEGs) and the average fold change. Gene ontology enrichment analysis revealed that OMVs induce a major transcriptional shift in Arabidopsis towards immune system activation, upregulating a multitude of immune-related pathways including a variety of immune receptors and transcriptional factors. Comparing Arabidopsis response to OMVs and to single purified elicitors, revealed that while OMVs induce a similar suite of genes and pathways as single elicitors, some differential pathways activated by OMVs were detected including response to drug and apoptosis, which may indicate exposure to toxic compounds via OMV. To examine whether the observed transcriptional shift in Arabidopsis leads to an effective immune response, plants were pretreated with OMVs and then inoculated with a bacterial pathogen. OMV-mediated priming led to a significant reduction in bacterial titer in inoculated leaves two days following inoculation. Mutations in the elongation factor receptor (EFR), flagellin receptor (FLS2), or the brassinosteroid-insensitive 1–associated kinase (BAK1) receptor, did not significantly affect OMV-priming. All together these results show that OMV induce a broad transcriptional shift in Arabidopsis leading to upregulation of multiple immune pathways, and that this transcriptional change is reflected in the ability to better resist bacterial infection.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3