BISoN: A Bayesian Framework for Inference of Social Networks

Author:

Hart Jordan D. A.ORCID,Weiss Michael N.ORCID,Franks Daniel W.ORCID,Brent Lauren J. N.ORCID

Abstract

AbstractSocial networks are often constructed from point estimates of edge weights. In many contexts, edge weights are inferred from observational data, and the uncertainty around point estimates can be affected by various factors. Though this has been acknowledged in previous work, methods that explicitly quantify uncertainty in edge weights have not yet been widely adopted, and remain undeveloped for common types of data. Furthermore, existing methods are unable to cope with some of the complexities often found in observational data, and do not propagate uncertainty in edge weights to subsequent analyses. We introduce a unified Bayesian framework for modelling social networks based on observational data. This framework, which we call BISoN, can accommodate many common types of observational social data, can capture confounds and model effects at the level of observations, and is fully compatible with popular methods of social network analysis. We show how the framework can be applied to common types of data and how various types of downstream analyses can be performed, including non-random association tests and regressions on network properties. Our framework opens up the opportunity to test new types of hypotheses, make full use of observational datasets, and increase the reliability of scientific inferences. We have made example R code available to enable adoption of the framework.

Publisher

Cold Spring Harbor Laboratory

Reference34 articles.

1. The cost of dichotomising continuous variables;BMJ : British Medical Journal,2006

2. A method for testing association patterns of social animals

3. Darren P Croft , Richard James , and Jens Krause . Exploring animal social networks. Princeton University Press, Princeton, N.J., 2010. ISBN 978-1-4008-3776-2. OCLC: 939935939.

4. Current directions in animal social networks

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3