Sequential propagation and routing of activity in a cortical network

Author:

Riquelme Juan LuisORCID,Hemberger Mike,Laurent GillesORCID,Gjorgjieva JulijanaORCID

Abstract

AbstractSingle spikes can trigger repeatable sequences of spikes in cortical networks. The mechanisms that support reliable propagation from such small events and their functional consequences for network computations remain unclear. We investigated the conditions in which single spikes trigger reliable and temporally precise sequences in a network model constrained by experimental measurements from turtle cortex. We examined the roles of connectivity, synaptic strength, and spontaneous activity in the generation of sequences. Sparse but strong connections support sequence propagation, while dense but weak connections modulate propagation reliability. Unsupervised clustering reveals that sequences can be decomposed into sub-sequences corresponding to divergent branches of strongly connected neurons. The sparse backbone of strong connections defines few failure points where activity can be selectively gated, enabling the controlled routing of activity. These results reveal how repeatable sequences of activity can be triggered, sustained, and controlled, with significant implications for cortical computations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3