The P2Y2 Nucleotide Receptor Mediates Monocyte Tissue Factor Expression and Endotoxemia Death in Mice

Author:

Peng Qianman,Qian Shenqi,Alqahtani Saud,Panizzi Peter,Shen Jianzhong

Abstract

AbstractRecently we reported that in human coronary artery endothelial cells, activation of the P2Y2 receptor (P2Y2R) induces up-regulation of tissue factor (TF), a vital initiator of the coagulation cascade. However, others have shown that monocyte TF is more critical than endothelial TF in provoking a pro-thrombotic state. Thus, we aimed to study whether monocytes express the P2Y2R, its role in controlling TF expression, and its relevance in vivo. RT-PCR and receptor activity assays revealed that among the eight P2Y nucleotide receptors, the P2Y2 subtype was selectively and functionally expressed in human monocytic THP-1 cells and primary monocytes. Stimulation of the cells by ATP or UTP dramatically increased TF protein expression, which was abolished by AR-C118925, a selective P2Y2R antagonist, or by siRNA silencing the P2Y2R. In addition, UTP or ATP treatment induced a rapid accumulation of TF mRNA preceded with an increased TF pre-mRNA, indicating enhanced TF gene transcription. In addition, stimulation of the monocyte P2Y2R significantly activated ERK1/2, JNK, p38, and Akt, along with their downstream transcription factors including c-Jun, c-Fos, and ATF-2, whereas blocking these pathways respectively, all significantly suppressed P2Y2R-mediated TF expression. Furthermore, we found that LPS triggered ATP release and TF expression, the latter of which was suppressed by apyrase or P2Y2R blockage. Importantly, P2Y2R-null mice were more resistant than wild-type mice in response to a lethal dose of LPS, accompanied by much less TF expression in bone marrow cells. These findings demonstrate for the first time that the P2Y2R mediates TF expression in human monocytes through mechanisms involving ERK1/2, JNK, p38, and AKT, and that P2Y2R deletion protects the mice from endotoxemia-induced TF expression and death, highlighting monocyte P2Y2R may be a new drug target for the prevention and/or treatment of relevant thrombotic disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3