Abstract
AbstractThe members of the Deinococcaceae family have the ability to survive extreme environmental conditions. Deinococcus species have a complex cell envelope composed of L-ornithine containing peptidoglycan. Anabolism of L-ornithine is intrinsically linked to L-lysine and L-arginine biosynthetic pathways. To understand these two pathways, we analyzed the L-lysine and L-arginine pathways using 23 Deinococcus genomes, including D. indicus. We used BLAST-P based ortholog identification using D. radiodurans’ genes as the query. We identified some BLAST-P hits that shared the same functional annotation. We analyzed three (class I aminotransferase, acetyl-lysine deacetylase, and acetyl glutamate/acetyl aminoadipate kinase) from L-lysine biosynthesis pathway and three (bifunctional ornithine acetyltransferase or N-acetyl glutamate synthase protein, nitric oxide synthase-like protein, and Acetyl-lysine deacetylase) from L-arginine biosynthesis pathway. Two proteins showed certain structural variations. Specifically, [LysW]-lysine hydrolase protein’s sequence and structure level changes indicated changes in oligomeric conformation, which could likely be a result of divergent evolution. And, bifunctional ornithine acetyltransferase or N-acetyl glutamate synthase had its active site pocket positions shifted at the structural level and we hypothesize that it may not perform at the optimal level. Thus, we were able to compare and contrast different Deinococcus species indicating some genes occurring because of divergent evolution.
Publisher
Cold Spring Harbor Laboratory