V1 receptive field structure contributes to neuronal response latency

Author:

Vafaei Amin,Mohammadi Milad,Khadir Alireza,Zabeh ErfanORCID,YazdaniBanafsheDaragh Faraz,Khorasani Mehran,Lashgari Reza

Abstract

AbstractThe timing of neuronal responses is considered to be important for information transferring and communication across individual neurons. However, the sources of variabilities in the timing of neuronal responses are not well understood and sometimes over-interpreted. A systematic variability in the response latencies of the primary visual cortex has been reported in presence of drifting grating stimulus. Whereas the response latencies are systematically dependent on stimulus orientation. To understand the underlying mechanism of these systematic latencies, we recorded the neuronal response of the cat visual cortex, area 17, and simulated the response latency of V1 neurons, with two geometric models. We showed that outputs of these two models significantly predict the response latencies of the electrophysiology recording during orientation tasks. The periodic patterns created in the raster plots were dependent on the relative position of the stimulus rotation center and the receptive-field sub-regions. We argue the position of stimulus is contributing to systematic response latencies, dependent on drifting orientation. Therefore, we provide a toolbox based on our geometrical model for determining the exact location of RF sub-regions. Our result indicates that a major source of neuronal variability is the lack of fine-tuning in the task parameters. Considering the simplicity of the orientation selectivity task, we argue fine-tuning of stimulus properties is crucial for deduction of neural variability in higher-order cortical areas and understanding their neural dynamics.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3