Abstract
AbstractFast-scan cyclic voltammetry (FSCV) is an effective tool for measuring dopamine (DA) release and clearance throughout the brain, including the ventral and dorsal striatum. Striatal DA terminals are abundant with signals heavily regulated by release machinery and the dopamine transporter (DAT). Peak height is a common method for measuring release but can be affected by changes in clearance. The Michaelis-Menten model has been a standard in measuring DA clearance, but requires experimenter fitted modeling subject to experimenter bias. The current study presents the use of the first derivative (velocity) of evoked DA signals as an alternative approach for measuring dopamine release and clearance and can be used to distinguish the two measures. Maximal upwards velocity predicts reductions in DA peak height due to D2 and GABAB receptor stimulation and by alterations in calcium concentrations. The Michaelis-Menten maximal velocity (Vmax) measure, an approximation for DAT numbers, predicted maximal downward velocity in slices and in vivo. Dopamine peak height and upward velocity were similar between wildtype C57 (WT) and DAT knock out (DATKO) mice. In contrast, downward velocity was considerably reduced and exponential decay (tau) was increased in DATKO mice, supporting use of both measures for changes in DAT activity. In slices, the competitive DAT inhibitors cocaine, PTT and WF23 increased peak height and upward velocity differentially across increasing concentrations, with PTT and cocaine reducing these measures at high concentrations. Downward velocity and tau values decreased and increased respectively across concentrations, with greater potency and efficacy observed with WF23 and PTT. In vivo recordings demonstrated similar effects of WF23 and PTT on measures of release and clearance. Tau was a more sensitive measure at low concentrations, supporting its use as a surrogate for the Michaelis-Menten measure of apparent affinity (Km). Together, these results inform on the use of these measures for DA release and clearance.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献