Multi-scalar data integration links glomerular angiopoietin-tie signaling pathway activation with progression of diabetic kidney disease

Author:

Liu Jiahao,Nair Viji,Zhao Yi-yang,Chang Dong-yuan,Eichinger Felix,Tanner Emily C.,Fermin Damian,Bellovich Keith A.,Steigerwalt Susan,Bhat Zeenat,Hawkins Jennifer J.,Subramanian Lalita,Rosas Sylvia E.,Sedor John R.ORCID,Vasquez Miguel A.,Waikar Sushrut S.,Bitzer Markus,Pennathur Subramaniam,Brosius Frank,Chen Min,Kretzler Matthias,Ju Wenjun,

Abstract

AbstractDiabetes is the leading cause of chronic kidney disease. Prognostic biomarkers reflective of underlying molecular mechanisms are critically needed for effective management of diabetic kidney disease (DKD). In the Clinical Phenotyping and Resource Biobank study, an unbiased, machine learning approach identified a three-marker panel from plasma proteomics which, when added to standard clinical parameters, improved the prediction of outcome of end-stage kidney disease (ESKD) or 40% decline in baseline glomerular filtration rate (GFR) in a discovery DKD group (N=58) and was validated in an independent group (N=68) who also had kidney transcriptomic profiles available. Of the three markers, plasma angiopoietin 2 (ANGPT2) remained significantly associated with composite outcome in 210 Chinese Cohort Study of Chronic Kidney Disease participants with DKD. The glomerular transcriptional Angiopoietin/Tie (ANG-TIE) activation scores, derived from the expression of 154 literature-curated ANG-TIE signaling mediators, positively correlated with plasma ANGPT2 levels and outcome, explained by substantially higher TEK receptor expression in glomeruli and higher ANG-TIE activation scores in endothelial cells in DKD by single cell RNA sequencing. Our work suggests that activation of glomerular ANG-TIE signaling in the kidneys underlies the association of plasma ANGPT2 with disease progression, thereby providing potential targets to prevent DKD progression.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3