Abstract
AbstractElectrical stimulation of peripheral nerves is a cornerstone of bioelectronic medicine. Effective ways to accomplish peripheral nerve stimulation noninvasively without surgically implanted devices is enabling for fundamental research and clinical translation. Here we demonstrate how relatively high frequency sine-wave carriers (3 kHz) emitted by two pairs of cutaneous electrodes can temporally interfere at deep peripheral nerve targets. The effective stimulation frequency is equal to the offset frequency (0.5 – 4 Hz) between the two carriers. We validate this principle of temporal interference nerve stimulation (TINS) in vivo using the murine sciatic nerve model. Effective actuation is delivered at significantly lower current amplitudes than standard transcutaneous electrical stimulation. Further, we demonstrate how flexible and conformable on-skin multielectrode arrays can facilitate precise alignment of TINS onto a nerve. Our method is simple, relying on repurposing of existing clinically-approved hardware. TINS opens the possibility of precise noninvasive stimulation with depth and efficiency previously impossible with transcutaneous techniques.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献