Sex bias evaluation of classic and novel Housekeeping Genes in adipose tissue through the massive analysis of transcriptomics data

Author:

Guaita-Cespedes Maria,Grillo-Risco RubénORCID,Hidalgo Marta R.ORCID,Fernández-Veledo Sonia,Burks Deborah,de la Iglesia-Vayá MaríaORCID,Galán AmparoORCID,Garcia-Garcia FranciscoORCID

Abstract

ABSTRACTHousekeeping genes (HKG), those involved in the maintenance of basic cell functions, are considered to have constant expression levels in all cell types, and are therefore commonly used as internal controls in gene expression studies. Nevertheless, multiple studies have shown that not all of them have stable expression levels across different cells, tissues, and conditions, introducing a systematic error in the experimental results. The proper selection and validation of control housekeeping genes in the specific studied conditions is crucial for the validity of the obtained results, although, up to date, sex has never been taken into account as a biological variable.In this work, we evaluate the expression profiles of six classical housekeeping genes, (four metabolic: HPRT, GAPDH, PPIA and UBC, and two ribosomal: 18S and RPL19) used as controls in several tissues, to determine the stability of their expression in adipose tissue of Homo sapiens and Mus musculus and asses sex bias and control suitability. We also evaluated gene expression stability of the genes included in different whole transcriptome microarrays available at the Gene Expression Omnibus database (GEO), to identify new genes suitable to be used as sex-unbiased controls. We perform a sex-based analysis to test for/reveal sexual dimorphism of mRNA expression stability.We use a novel computational strategy based on meta-analysis techniques which evidence that some classical housekeeping genes do not fit to analyze human adipose tissue when sex variable is included. For instance, the extensively used 18S has shown to be variable in this tissue, while PPIA and RPL19 have shown to be good HKG targets. Further, we propose new sex-unbiased human and mouse housekeeping genes, derived from sex-specific expression profiles, including, RPS8 or UBB. All the results generated in this work are available in an open web resource (https://bioinfo.cipf.es/metafun-HKG), so that they can be consulted and used in further studies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3