Sensory cortical dynamics during optical microstimulation training

Author:

Pancholi RaviORCID,Ryan LaurenORCID,Peron SimonORCID

Abstract

SUMMARYPrimary sensory cortex is a key locus of plasticity during learning. Exposure to novel stimuli often alters cortical activity, but isolating cortex-specific dynamics is challenging due to extensive pre-cortical processing. Here, we employ optical microstimulation of pyramidal neurons in layer (L) 2/3 of mouse primary vibrissal somatosensory cortex (vS1) to study cortical dynamics as mice learn to discriminate microstimulation intensity. Tracking activity over weeks using two-photon calcium imaging, we observe a rapid sparsification of the photoresponsive population, with the most responsive neurons exhibiting the largest declines in responsiveness. Following sparsification, the photoresponsive population attains a stable rate of neuronal turnover. At the same time, the photoresponsive population increasingly overlaps with populations encoding whisker movement and touch. Finally, we find that mice with larger declines in responsiveness learn the task more slowly than mice with smaller declines. Our results reveal that microstimulation-evoked cortical activity undergoes extensive reorganization during task learning and that the dynamics of this reorganization impact perception.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3