LINE-1 activation in the cerebellum drives ataxia

Author:

Takahashi TakehiroORCID,Kudo Eriko,Song Eric,Carvalho Fernando,Yasumoto Yuki,Kong Yong,Park Annsea,Stoiljkovic Milan,Gao Xiao-Bing,Shanabrough Marya,Szigeti-Buck Klara,Liu Zhong-Wu,Zhang Yalan,Sulkowski Parker,Glazer Peter M.,Kaczmarek Leonard K.,Horvath Tamas L.,Iwasaki AkikoORCID

Abstract

ABSTRACTPrevious studies have revealed that dysregulation of long interspersed nuclear element 1 (LINE-1), a dominant class of transposable elements in the human genome, correlates with neurodegeneration1–3. Yet whether LINE-1 dysregulation is causal to disease pathogenesis has not been proven directly. Here, we demonstrate that expression of evolutionarily younger LINE-1 families is elevated in the cerebella of ataxia telangiectasia (AT) patients, which was correlated with extensive downregulation of epigenetic silencers. To examine whether LINE-1 activation causes neurologic disease, we established an approach to directly target and activate the promoter of a young family of LINE-1 in mice. LINE-1 activation in the cerebellum was sufficient to lead to robust progressive ataxia. Purkinje cells in the diseased mice exhibited marked electrophysiological dysfunctions and degeneration with a significant accumulation of cytoplasmic ribonucleoprotein LINE-1Orf1p aggregates, endoplasmic reticulum (ER) stress, and DNA damage. Treatment with lamivudine, a nucleoside reverse transcriptase inhibitor, blunted the disease progression by reducing DNA damage, attenuating gliosis and interferon gene signature, and recovering the loss of key functional molecules for calcium homeostasis in Purkinje cells. This study provides direct evidence that young LINE-1 activation drives ataxia phenotype, and points to its pleiotropic effects leading to DNA damage, inflammation, and dysfunction and degeneration of neurons.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3