Abstract
AbstractThe exchange of genes between potentially unrelated bacteria is termed horizontal gene transfer (HGT) and is a driving force in bacterial evolution. Natural transformation is one mechanism of HGT where extracellular DNA (eDNA) from the environment is recombined into a host genome. The widespread conservation of transformation in bacterial lineages implies there is a fitness benefit. However, the nature of these benefits and the evolutionary origins of transformation are still unknown. Here, I examine how ∼330 generations or 100 days of serial passage in either constant or increasing salinities impacts the growth rate and transformation efficiency of Pseudomonas stutzeri. While the growth rate generally improved in response to serial transfer, the transformation efficiency of the evolved lineages varied extensively, with only 39-64% of populations undergoing transformation at the end of adaptive evolution. In comparison, 100% of the ancestral populations were able to undergo natural transformation. I also found that evolving P. stutzeri with different cell lysates (or populations of dead cells) minimally affected the growth rate and transformation efficiency, especially in comparison to the pervasiveness with which transformation capacity was lost across the evolved populations. Taken together, I show that the efficiency of eDNA uptake changes over relatively rapid timescales, suggesting that transformation is an adaptive and selectable trait that could be lost in environments where it is not beneficial.
Publisher
Cold Spring Harbor Laboratory