Abstract
AbstractPlant cell walls undergo multiple cycles of dehydration and rehydration during their life. Calcium crosslinked low methoxy pectin is a major constituent of plant cell walls. Understanding the dehydration-rehydration behavior of pectin gels may shed light on the water transport and mechanics of plant cells. In this work, we report the contributions of microstructure to the mechanics of pectin-Ca gels subjected to different extents of dehydration and subsequent rehydration. This is investigated using a pectin gel composition that forms ‘egg-box bundles’, a characteristic feature of the microstructure of low methoxy pectin-Ca gels. Large Amplitude Oscillatory Shear (LAOS) rheology along with Small Angle Neutron Scattering and Near Infrared (NIR) spectroscopy on pectin gels are used to elucidate the mechanical and microstructural changes during dehydration-rehydration cycles. As the extent of dehydration increase, the reswelling ability, strain-stiffening behavior and the yield strain decreases. These effects are more prominent at faster rates of dehydration and are not completely reversible upon rehydration to the initial undried state. Microstructural changes due to the aggregation of egg-box bundles and single chains and the associated changes in the water configurations lead to these irreversible changes.
Publisher
Cold Spring Harbor Laboratory
Reference31 articles.
1. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes;Journal of Experimental Botany,2015
2. How do stomata respond to water status?
3. “Vegetable Dynamicks”: The Role of Water in Plant Movements
4. Changes in the cell wall network during the thermal dehydration of alfalfa stems;Journal of Agricultural and Food Chemistry,2002