Abstract
AbstractThe rise in wildfire frequency in the western United States has increased interest in secondary succession. However, despite the role of soil microbial communities in plant regeneration and establishment, microbial secondary succession is poorly understood owing to a lack of measurements immediately post-fire and at high temporal resolution. To fill this knowledge gap, we collected soils at 2 and 3 weeks and 1, 2, 3, 4, 6, 9, and 12 months after a chaparral wildfire in Southern California. We assessed bacterial and fungal biomass with qPCR of 16S and 18S and richness and composition with Illumina MiSeq sequencing of the 16S and ITS2 amplicons. We found that fire severely reduced bacterial biomass by 47% and richness by 46%, but the impacts were stronger for fungi, with biomass decreasing by 86% and richness by 68%. These declines persisted for the entire post-fire year, but bacterial biomass and richness oscillated in response to precipitation, whereas fungal biomass and richness did not. Fungi and bacteria experienced rapid succession, with 5-6 compositional turnover periods. As with plants, fast-growing surviving microbes drove successional dynamics. For bacteria, succession was driven by the phyla Firmicutes and Proteobacteria, with the Proteobacteria Massilia dominating all successional time points, and the Firmicutes (Domibacillus and Paenibacillus) dominating early-to mid-successional stages (1-4.5 months), while the Proteobacteria Noviherbaspirillum dominated late successional stages (4.5-1 year). For fungi, succession was driven by the phyla Ascomycota, but ectomycorrhizal basidiomycetes, and the heat-resistant yeast, Geminibasidium were present in the early successional stages (1 month). However, pyrophilous filamentous Ascomycetes Pyronema, Penicillium, and Aspergillus, dominated all post-fire time points. While wildfires vastly decrease bacterial and fungal biomass and richness, similar to plants, pyrophilous bacteria and fungi increase in abundance and experience rapid succession and compositional turnover in the first post-fire year, with potential implications for post-fire chaparral regeneration.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献