Consequence of adjustments for demographic or clinical covariates and a recommended solution in genome-wide association studies

Author:

Sun Xiaoru,Li Hongkai,Yu Yuanyuan,Yuan Zhongshang,Jin Chuandi,Hou Lei,Liu Xinhui,Wang Qing,Xue Fuzhong

Abstract

AbstractGenome-wide association study (GWAS) is fundamentally designed to detect disease-causing genes. To reduce spurious associations or improve statistical power, about 80% of GWASs arbitrarily adjusted for demographic or clinical covariates. However, adjustment strategies in GWASs have not achieved consistent conclusions. Given the initial aim of GWAS that is to identify the causal association between a specific causal single-nucleotide polymorphism (SNP) and disease trait, we summarized all complex relationships of the target SNP, covariate and disease trait into 15 causal diagrams according to various roles of the covariate. Following each causal diagram, we conducted a series of theoretical justifications and statistical simulations. Our results demonstrate that it is unadvisable to adjust for any demographic or clinical covariates. We illustrate our point by applying GWASs for body mass index (BMI) and breast cancer, including adjusting and non-adjusting for age and smoking status. Genetic effects and P values might vary across different strategies. Instead, adjustments for SNPs (G′) should be strongly recommended when G′ are in linkage disequilibrium with the target SNP, and correlated with disease trait conditional on the target SNP. Specifically, adjustment for such G′ can block all the confounding paths between the target SNP and disease trait, and avoid over-adjusting for colliders or intermediaries.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3