A temporal sequence of thalamic activity unfolds at transitions in behavioral arousal state

Author:

Setzer Beverly,Fultz Nina E.,Gomez Daniel E. P.,Williams Stephanie D.,Bonmassar Giorgio,Polimeni Jonathan R.,Lewis Laura D.

Abstract

ABSTRACTThe moment of awakening from sleep reflects a profound transformation in neural activity and behavior. The thalamus is a key controller of arousal state, but whether its diverse nuclei exhibit coordinated or distinct activity at transitions in behavioral arousal state is not known. Using fast fMRI at ultra-high field (7 Tesla), we measured sub-second activity across thalamocortical networks and within nine thalamic nuclei to delineate these dynamics during spontaneous transitions in behavioral arousal state. We discovered a stereotyped sequence of activity across thalamic nuclei that preceded behavioral arousal after a period of inactivity, followed by widespread cortical deactivation. These thalamic dynamics were linked to whether participants remained awake or fell back asleep, with unified thalamic activation reflecting subsequent maintenance of awake behavior. These results provide an outline of the complex interactions across thalamocortical circuits that orchestrate arousal state transitions, and additionally, demonstrate that fast fMRI can resolve sub-second subcortical dynamics in the human brain.

Publisher

Cold Spring Harbor Laboratory

Reference127 articles.

1. The scoring of arousal in sleep: reliability, validity, and alternatives;J. Clin. Sleep Med. JCSM Off. Publ. Am. Acad. Sleep Med,2007

2. Iber, C. & American Academy of Sleep Medicine. The AaSm manual for the scoring of sleep and associated events: rules, terminology and technical specifications. (American Academy of Sleep Medicine, 2007).

3. An electrophysiological marker of arousal level in humans

4. Topographical and Temporal Patterns of Brain Activity During the Transition From Wakefulness to Sleep;Sleep,1995

5. Oscillating circuitries in the sleeping brain;Nat. Rev. Neurosci,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3