Abstract
AbstractStereotactic-electroencephalography (SEEG) is a common neurosurgical method to localize epileptogenic zone in drug resistant epilepsy patients and inform treatment recommendations. In the current clinical practice, localization of epileptogenic zone typically requires prolonged recordings to capture seizure, which may take days to weeks. Although epilepsy surgery has been proven to be effective in general, the percentage of unsatisfactory seizure outcomes is still concerning. We developed a method to identify the seizure onset zone (SOZ) and predict seizure outcome using short-time resting-state SEEG data. In a cohort of 43 drug resistant epilepsy patients, we estimated the information flow via directional connectivity and inferred the excitation-inhibition ratio from the 1/f power slope. We hypothesized that the antagonism of information flow at multiple frequencies between SOZ and non-SOZ underlying the relatively stable epilepsy resting state could be related to the disrupted excitation-inhibition balance. We found higher excitability in non-SOZ regions compared to the SOZ, with dominant information flow from non-SOZ to SOZ regions, probably reflecting inhibitory input from non-SOZ to prevent seizure initiation. Greater differences in information flow between SOZ and non-SOZ regions were associated with favorable seizure outcome. By integrating a balanced random forest model with resting-state connectivity, our method localized the SOZ with an accuracy of 85% and predicted the seizure outcome with an accuracy of 77% using clinically determined SOZ. Overall, our study suggests that brief resting-state SEEG data can significantly facilitate the identification of SOZ and may eventually predict seizure outcomes without requiring long-term ictal recordings.
Publisher
Cold Spring Harbor Laboratory