Overexpression of NDR1 Leads to Pathogen Resistance at Elevated Temperatures

Author:

Samaradivakara Saroopa P.ORCID,Chen HuanORCID,Lu Yi-JuORCID,Li PaiORCID,Kim Yongsig,Tsuda KenichiORCID,Mine AkiraORCID,Day BradORCID

Abstract

ABSTRACTAbiotic and biotic environments influence a myriad of plant-related processes, including growth, development, and the establishment and maintenance of interaction(s) with microbes. As a driver of this signaling between plants and microbes, the role of plant hormones in both surveillance and signaling has emerged as a point of intersection between plant-abiotic and -biotic responses. In the current study, we elucidate a role for NON-RACE-SPECIFIC DISEASE RESISTANCE1 (NDR1) by exploiting effector-triggered immunity (ETI) to define the regulation of plant host immunity in response to both pathogen infection and elevated temperature. We generated time-series RNA sequencing data of WT Col-0, a NDR1 overexpression line, as well as ndr1 and ics1-2 mutant plants under elevated temperature. Not surprisingly, the NDR1-overexpression line showed genotype-specific gene expression changes related to defense response and immune system function. Interestingly, overexpression of NDR1 revealed a role for NDR1 in immune system function; specifically, we describe a mechanism that intersects with Pseudomonas syringae, type-III effector translocation, R-protein signaling complex stabilization, and sustained levels of SA at elevated temperature during ETI. The results described herein support a role for NDR1 in maintaining cell signaling during simultaneous exposure to elevated temperature and avirulent pathogen stressors.One-sentence summaryNDR1 is required for Pst-AvrRpt2 triggered ETI at elevated temperature.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3