Abstract
AbstractExposure to elevated temperatures during embryogenesis has profound acute effects on the cardiac performance, metabolism, and growth of fishes. Some temperature-induced effects may be retained into, or manifest in, later-life through a mechanism termed developmental programming. In this study, we incubated Scyliorhinus canicula embryos at either 15°C or 20°C before transferring the newly hatched sharks to a common set of conditions (15°C) for 5 months. Lasting transcriptomic differences associated with the developmental environment were identified, and interactions between cardiac genes were investigated using hypernetwork modelling. Development at an elevated temperature caused changes in transcriptomic connectivity and entropy, parameters thought to relate to plasticity and fitness. We then validated these observations through a novel re-analysis of published Danio rerio and Dicentrarchus labrax muscle tissue datasets. Together, these data demonstrate a persistent, programmed effect of developmental temperature on the co-ordination of gene expression in three species of fishes, which may relate to altered plasticity and fitness in later-life.
Publisher
Cold Spring Harbor Laboratory