Abstract
AbstractReceptor-activity-modifying proteins (RAMPs) are ubiquitously expressed membrane proteins that associate with different G protein-coupled receptors (GPCRs) including the parathyroid hormone 1 receptor (PTH1R), a class B GPCR and an important modulator of mineral ion homeostasis and bone metabolism. However, it is unknown whether and how RAMP proteins may affect PTH1R function.Using different optical biosensors to measure the activation of PTH1R and its downstream signalling, we describe here that RAMP2 acts as a specific allosteric modulator of PTH1R, shifting PTH1R to a unique pre-activated state that permits faster activation in a ligand-specific manner. Moreover, RAMP2 modulates PTH1R downstream signalling in an agonist-dependent manner, most notably increasing the PTH-mediated Gi3 signalling sensitivity. Additionally, RAMP2 increases both PTH- and PTHrP-triggered β-arrestin2 recruitment to PTH1R. Employing homology modelling we describe the putative structural molecular basis underlying our functional findings.These data uncover a critical role of RAMPs in the activation and signalling of a GPCR that may provide a new venue for highly specific modulation of GPCR function and advanced drug design.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献