Modeling the dynamics of within-host viral infection and evolution predicts quasispecies distributions and phase boundaries separating distinct classes of infections

Author:

Lewis Greyson R.ORCID,Marshall Wallace F.ORCID,Jones Barbara A.ORCID

Abstract

AbstractWe use computational modeling to study within-host viral infection and evolution. In our model, viruses exhibit variable binding to cells, with better infection and replication countered by a stronger immune response and a high rate of mutation. By varying host conditions (permissivity to viral entry T and immune clearance intensity A) for large numbers of cells and viruses, we study the dynamics of how viral populations evolve from initial infection to steady state and obtain a phase diagram of the range of cell and viral responses. We find three distinct replicative strategies corresponding to three physiological classes of viral infections: acute, chronic, and opportunistic. We show similarities between our findings and the behavior of real viral infections such as common flu, hepatitis, and SARS-CoV-2019. The phases associated with the three strategies are separated by a phase transition of primarily first order, in addition to a crossover region. Our simulations also reveal a wide range of physical phenomena, including metastable states, periodicity, and glassy dynamics. Lastly, our results suggest that the resolution of acute viral disease in patients whose immunity cannot be boosted can only be achieved by significant inhibition of viral infection and replication.Author summaryVirus, in particular RNA viruses, often produce offspring with slightly altered genetic composition. This process occurs both across host populations and within a single host over time. Here, we study the interactions of viruses with cells inside a host over time. In our model, the viruses encounter host cell defenses characterized by two parameters: permissivity to viral entry T and immune response A). The viruses then mutate upon reproduction, eventually resulting in a distribution of related viral types termed a quasi-species distribution. Across varying host conditions (T, A), three distinct viral quasi-species types emerge over time, corresponding to three classes of viral infections: acute, chronic and opportunistic. We interpret these results in terms of real viral types such as common flu, hepatitis, and also SARS-CoV-2019. Analysis of viral of viral mutant populations over a wide range of permissivity and immunity, for large numbers of cells and viruses, reveals phase transitions that separate the three classes of viruses, both in the infection-cycle dynamics and at steady state. We believe that such a multiscale approach for the study of within-host viral infections, spanning individual proteins to collections of cells, can provide insight into developing more effective therapies for viral disease.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3