Food Restriction Augmented Alpha1–Adrenergic Mediated Contraction in Mesenteric Arteries

Author:

Vorn Rany,Yoo Hae Young

Abstract

AbstractFood restriction (FR) enhances the sensitivity to cardiopulmonary reflexes and α1- adrenoreceptors in the female, despite hypotension. The effect of male FR on cardiopulmonary and systemic vascular function is not well understood. This study examines the effects of FR on cardiopulmonary, isolated mesenteric arterial function and potential underlying mechanisms. We hypothesized that FR decreased eNOS activity in mesenteric arteries. Male Sprague Dawley (SD) rats were randomly divided into three groups: (1) control (n=30), (2) 20 percent of food reduction (FR20, n=30), and (3) 40 percent of food reduction (FR40, n=30) for five weeks. Non-invasive blood pressure was measured twice a week. Pulmonary arterial pressure (PAP) was measured using isolated/perfused lungs in rats. The isolated vascular reactivity was assessed in double-wire myograph. After five weeks, food restricted rats exhibited a lower mean arterial pressure and heart rate, however, only FR40 groups exhibited statistically significant differences. The basal tone of PAP and various vasoconstrictors did not show significant differences in pulmonary circulation between each group. We observed that food restriction were enhanced the sensitivity (EC50) in response to α1-adrenoreceptors (phenylephrine, PhE)-induced vasoconstriction, but not to serotonin, U46619, and high K+ in the mesenteric arteries. FR reduced endothelium-dependent relaxation via decreased function of endothelial nitric oxide synthase (eNOS)-nitric oxide (NO) pathway in the mesenteric arteries. PhE-mediated vasoconstriction in mesenteric arteries was eliminated in the presence of eNOS inhibitor (L-NAME). In addition, incubation with NOX2/4 inhibitors (apocynin, GKT137831, VAS2870) and reactive oxygen species (ROS) scavenger inhibitor (Tiron) were eliminated the differences of PhE-mediated vasoconstriction but not to cyclooxygenase inhibitor (indomethacin) in the mesenteric artery. Augmentation of α1–adrenergic mediated contraction via inhibition of eNOS-NO pathway by increased activation of ROS through NOX2/4 in response to FR. Reduced eNOS-NO signaling might be a pathophysiological counterbalance to prevent hypovolemic shock in response to FR.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3