Spike initiation properties in the axon support high-fidelity signal transmission

Author:

Kamaleddin Mohammad AminORCID,Abdollahi NooshinORCID,Ratté StéphanieORCID,Prescott Steven AORCID

Abstract

ABSTRACTThe axon initial segment (AIS) converts graded depolarization into all-or-none spikes that are transmitted by the axon to downstream neurons. Analog-to-digital transduction and digital signal transmission call for distinct spike initiation properties (filters) and those filters should, therefore, differ between the AIS and distal axon. Here we show that unlike the AIS, which spikes repetitively during sustained depolarization, the axon spikes transiently and only if depolarization reaches threshold before KV1 channels activate. Rate of depolarization is critical. This was shown by optogenetically evoking spikes in the distal axon of CA1 pyramidal neurons using different photostimulus waveforms and pharmacological conditions while recording antidromically propagated spikes at the soma, thus circumventing the prohibitive difficulty of patching intact axons. Computational modeling shows that KV1 channels in the axon implement a high-pass filter that is matched to the axial current waveform associated with spike propagation, thus maximizing the signal-to-noise ratio to ensure high-fidelity transmission of spike-based signals.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3