A seasonal pulse of ungulate neonates influences space use by carnivores in a multi-predator, multi-prey system

Author:

Ruprecht Joel,Forrester Tavis D.,Jackson Nathan J.,Clark Darren A.,Wisdom Michael J.,Rowland Mary M.,Smith Joshua B.,Stewart Kelley M.,Levi TaalORCID

Abstract

AbstractThe behavioral mechanisms by which predators encounter prey are poorly resolved. In particular, the extent to which predators engage in active search for prey versus incidentally encountering them is unknown. The distinction between search and incidental encounter influences prey population dynamics with active search exerting a stabilizing force on prey populations by alleviating predation pressure on low-density prey and increasing it for high-density prey.Parturition of many large herbivores occurs during a short and predictable temporal window in which young are highly vulnerable to predation. Our study aims to determine how a suite of carnivores responds to the seasonal pulse of newborn ungulates using contemporaneous GPS locations of four species of predators and two species of prey.We used step-selection functions to assess whether coyotes, cougars, black bears, and bobcats actively searched for parturient females in a low-density population of mule deer and a high-density population of elk. We then assessed whether searching carnivores shifted their habitat use toward areas exhibiting a high probability of encountering neonates.None of the four carnivore species encountered parturient mule deer more often than expected by chance suggesting that predation of young resulted from incidental encounters. By contrast, we determined that cougar and male bear movements positioned them in proximity of parturient elk more often than expected by chance which is evidence of searching behavior. Although both male bears and cougars searched for neonates, only male bears used elk parturition habitat in a way that dynamically tracked the phenology of the elk birth pulse suggesting that maximizing encounters with juvenile elk was a motivation when selecting resources.Our results support the existence of a stabilizing mechanism to prey populations through active search behavior by predators because carnivores in our study searched for the high-density prey species (elk) but ignored the low-density species (mule deer). We conclude that prey density must be high enough to warrant active search, and that there is high interspecific and intersexual variability in foraging strategies among large mammalian predators and their prey.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3